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This paper shows that the Taylor dispersion flux is a dissipative flux of extended thermodynamics.
Every term in the evolution equations for the Taylor flux components is connected to a thermodynamic
function and the entropy production is proved to be positive definite. Thermodynamic restrictions on

phenomenological coefficients are also satisfied.
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I. INTRODUCTION

Taylor dispersion originally arose in the study of the
longitudinal dispersion of a solute suspended in a solvent
which flows along a rectilinear tube [1-3]. In 1953, Tay-
lor found the fundamental result that the combined ac-
tion of a unidirectional velocity field and transverse
molecular diffusion leads to a longitudinal diffusion for
asymptotic long times. Since then much work has been
done trying to generalize his results. These efforts have
been addressed in different directions and from very
different points of view; besides regarding Taylor disper-
sion as a hydrodynamic problem [4-9], some authors
have stressed its relation to the elimination of fast modes
[10,11], or the theory of stochastic processes [12,13]; it
has also been applied to a wide variety of physical prob-
lems, from contaminant dispersion [14] to the dispersion
of polymers in solution [15], to name only two.

There also exists a strong connection between Taylor
dispersion and kinetic theory: the problem of finding a
closed equation for the averaged concentration starting
from the (more detailed) hydrodynamic equations is
analogous to the derivation of the latter ones from kinetic
theory. Similarly as hydrodynamic equations can also be
obtained from a framework which belongs to the same
level of description, i.e., the thermodynamics of irreversi-
ble processes, we have recently developed a purely one-
dimensional model for Taylor dispersion valid for all
times by using a one-dimensional thermodynamics
[16,17]; in this way we have established a link between
Taylor dispersion and thermodynamics, a relation which
had not been pointed out in the past. To do that, we
could not use the classical theory of irreversible processes
[18] because it is only able to describe the asymptotic
diffusive regime [9]. Thus we set ourselves in the frame-
work of extended irreversible thermodynamics (EIT) [19]
and proposed a generalization of the fundamental result
by Taylor, namely, the combination of unidirectional ve-
locity fields and transverse molecular diffusion adopts in
one dimension the form of a dissipative flux of extended
thermodynamics; in the long-time limit these fluxes be-
come diffusive and one recovers Taylor’s result. This al-
lowed us to find constitutive equations for the Taylor
dispersion flux (more complex than a Fick’s law, of
course) which were in excellent agreement with numeri-
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cal simulations for the first moments of the distribution
over long time spans (in certain conditions even along all
times). This is a very interesting aspect since the exten-
sion of asymptotic longitudinal dispersion to shorter
times remains an active field of research ([11,7,9,10]
among many others).

Our purely one-dimensional model—a feature which
distinguishes our approach from previous ones, whose
start points are always three-dimensional —provides an
evolution equation for the average solute concentration
with a few constant (time- and space-independent)
coefficients bearing a clear physical meaning. Further-
more, its purely one-dimensional character endows it
with a wide generality, so that it furnishes a unifying
scheme for a broad variety of physical situations where
longitudinal dispersion occurs (for instance, dispersion in
porous media or sedimentation of nonspherical particles,
to name two systems with interest in engineering sci-
ences). As an example of it, in Ref. [16] we briefly ap-
plied the model to the study of tracer dispersion in
porous media straightforwardly providing the main
features of transient non-Gaussian dispersion shown by
experiments [20,21]. For a detailed discussion of the uni-
dimensional approach the reader is referred to Refs.
[16,22,17].

Later on, a detailed analysis starting from the tridi-
mensional convection-diffusion equation (i.e., in the tridi-
mensional space) revealed that the Taylor flux, which we
had assumed to be simple, was actually made up by an
infinite number of contributions; J(x,t)=3 7~ J,(x,1)
(x denotes the coordinate in the flow direction), satisfying
the equations [22,17],

Dy dc(x,t) +D 3,
dx " dx?

>

(1)

where c¢(x,?) is the averaged concentration, D, is the
molecular diffusivity, the dot indicates material time
differentiation, and 7,, D,, and v,,, are some coefficients
depending on the section geometry and the velocity
profile. By performing some kind of renormalization we
recovered the constitutive equation found from the pure-
ly one-dimensional model, thus getting the analog to the
kinetic confirmation of hydrodynamic equations.

The purpose of this paper is to demonstrate the main
assumption made in the coarse-grained model, which at
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the same time constitutes its most fundamental result,
namely, that the Taylor flux is a dissipative flux of EIT.
Notice that the dynamics for the fluxes J, described by
(1) is far from being common in the classical theory of ir-
reversible processes [18], which in the isothermal disper-
sion under study supplies a simple Fickian law.
Meanwhile, Eq. (1) not only contains a diffusive term, but
a relaxational one—the first in the left—a term which
couples each contribution J, with the others through the
parameters ¥ ,,,, and a term that shows a spatial correla-
tion in J,. Here we prove that all these contributions are
perfectly predicted by extended thermodynamics and
that, in contrast to classical irreversible thermodynamics
[18], the entropy production is positive definite as re-
quired by the second law.

The incorporation of Taylor dispersion into the scheme
of extended thermodynamics bears also a lot of interest
for the followers of EIT. First, from a conceptual point
of view, since it means the application of its formalism at
a different scale from the usual one in thermodynamics;
instead of working in the habitual three-dimensional
space, we deal here with a one-dimensional space where
the other two spatial coordinates have disappeared in a
coarse graining process. Second, because it represents
the extension of its range of application to the rich phe-
nomenology of longitudinal dispersion, which includes,
for instance, the sedimentation of nonspherical particles
or the tracer dispersion in porous media (for a wide list of
examples see Ref. [9]). And finally, because these sys-
tems are characterized by long relaxation times for the
dissipative fluxes so that the consequences of extended
thermodynamics are easily accessible to experimentation;
we must bear in mind that, in the tridimensional version
of EIT, these relaxation times are very short—frequently
of the order of the collision times—so that its manifesta-
tions usually fall outside the experimental scope.

The paper is organized as follows. In Sec. 11, the evo-
lution equations for the Taylor flux components are
found from a three-dimensional analysis. In Sec. III, we
introduce an entropy and an entropy flux for Taylor
dispersion and write the corresponding entropy balance
equation; in Sec. IV, the constitutive equations for the
contributions J, are obtained following the usual method
in irreversible thermodynamics; and Sec. V is devoted to
conclusions.

II. TAYLOR FLUX COMPONENTS

The aim of this section is twofold. On the one hand, it
summarizes the procedure followed in Ref. [22] to obtain
Eq. (1) from the tridimensional convection-diffusion equa-
tion in order for the paper to be self-contained. On the
other hand, it extends the stationary-flow study per-
formed there to nonstationary velocity fields.

For the sake of simplicity we restrict ourselves to flows
between parallel plates separated by a distance d. This
choice presents the advantage of reducing the problem to
two dimensions and simplifying the eigenfunctions to
mere cosines. The extension to arbitrary geometries is
straightforward by using the corresponding eigenfunc-
tions.
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For a dilute solution the bidimensional concentration
distribution c(x,y,t)—y denoting the coordinate between
plates—satisfies the convection-diffusion equation

¢ + d%c

dc dc
__+ r’ t______
v(y,)ax Dy ax?  3y?

a , ()

with v’(p) the velocity profile as seen in an inertial frame;
it can be split into two parts, the section-averaged veloci-
ty u(#), and the rest: v'(y,t)=u(z)+v(y,¢), so that Eq.
(2) can be rewritten as
dc _

¢t+v(y,t)—=D,,
ox

% , d%

5;7 dy? ’ )

where the dot indicates a one-dimensional material time
derivative, i.e.,

e=dc 98¢ (noe
T dt ot ox

Since fluid particles in the coarse-grained one-
dimensional description are slices of width dx along the
tube axis, their barycentric velocity—the mean speed of
the fluid contained in these volume elements—is the
section-averaged speed of the tridimensional fluid parti-
cles, ie, u(t)=(1/d)[ldyv'(y,t); therefore the
differential operator in Eq. (4) has indeed the structure of
a one-dimensional substantial time derivative.

After introducing the Fourier coefficients for the con-
centration and velocity,

4)

nwy

d
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some direct calculations yield the following equation for
the ¢, components:

én+%%mil[cn+m tein—m om
=D, %~n22~§]cn n=0,1,.... (6)
For the section-averaged concentration c¢(x,?)
=1/2¢y(x,1), one has
ac—g’t"—”+% c(x,t)u(t)-i—ngl%vncn(x,t)
-p, Tt )

It is immediate to read this expression as a mass balance
equation which incorporates a convective term
c(x,t)u(?), a unidimensional molecular diffusion flux

Jm=—D,,0c(x,t)/0x, and a velocity-dependent spec-
trum
J,(x,t)=2v,(t)c,(x,8), n=1,2,.... (8)

1
2

Therefore, J, is the contribution of the nth
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mode to a Taylor flux defined as Jy(x,1)
=(1/d)fgdyc(x,y,t)u (y,t), obviously the expression
that one should expect for a particle flux related to the
velocity field. The purpose of the present work is to
demonstrate that this flux, which has a convective char-
acter when it is regarded from three dimensions, turns
out to be dissipative when seen in one dimension, at the
same level of the longitudinal diffusion flux, but of course
with several distinguishing features.

If we multiply (6) by v, /2 and manipulate a bit, we ob-
tain a constitutive equation for the fluxes J, (x, ),

& dc(x,t)
ox

3%,
" dx?
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where we have defined the coefficents
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In the case of arbitrary (but uniform) section geometries,
the results are the same (aside from a normalization fac-
tor) except for the time spectrum, which is specific for
each geometry. For stationary flows, coefficients, y,
identically vanish so that we recover Eq. (1).

As mentioned before, these evolution equations are
much more complex than the simple Fickian laws coming
from classical irreversible thermodynamics. Conversely,
they lead to nonpositive entropy productions in this ther-
modynamic context, as can be straightforwardly seen by
introducing Eq. (9) into the classical expression for the
entropy production, o <Jdc (x,t)/9x.

In the following sections we demonstrate that Eq. (9)
can be obtained from extended thermodynamics and that
coefficents (10) and (11) satisfy the restrictions imposed
by this thermodynamic framework.

III. ENTROPY BALANCE

In the study of Taylor dispersion the solution is con-
sidered to be so diluted that the barycentric velocity of
the mixture coincides with the solvent speed; this fact
was used in writing the convection-diffusion equation (2).
This way the role of the solvent becomes essentially para-
metric and consists in imposing the velocity field in
which the solute evolves. For this reason, it is not
surprising that in the thermodynamic description given
here the system is treated as monocomponent.

In extended thermodynamics it is assumed that non-
equilibrium states are characterized not only by the clas-
sical local-equilibrium variables (such as the specific ener-
gy or the specific volume, for a simple system), but also
by the dissipative fluxes, which are considered to be in-
dependent variables at the same level of the first ones, so
that the thermodynamic functions, like the entropy or
the entropy flux, depend on all these quantities. Accord-
ingly, we introduce a generalized entropy for Taylor

dispersion which includes, besides the local-equilibrium
magnitude ¢ (x,?), the Taylor contributions J,, and their
fluxes P,:s(x,t)=s(c,{J,},{P,}). The incorporation of
the second-order tensors P, allows one to introduce spa-
tial correlations between fluxes, which is a characteristic
feature in the dynamics of fluxes J, as shown in Eq. (9);
these terms have been employed in the past, for instance,
in the study of phonon hydrodynamics [19] or non-
Fickian diffusion in polymers [23].

We thus assume for situations not far from equilibrium
a generalized entropy of the form

s(x,0)=s.q(x,0)— 3 3a,J,-J, = X 3B, Py:Py (12)
n=1 n=1

with s(x,?) the entropy per unit volume, s(x,?) the

local-equilibrium term, and the rest are purely nonequili-

brium contributions; the symbol “:” indicates tensorial

contraction.

This is the simplest expression which makes use of the
independent variables under consideration. The positive
sign of coefficents «, and f3, guarantees that the entropy
is maximum at equilibrium. These coefficients are in-
dependent of J,, and P, and their form is specific for each
particular system. Although they are generally con-
sidered as independent of time, in Taylor dispersion they
are expected to depend on the velocity profile so that for
nonstationary flows they become time dependent.

By differentiating (12) and using the local-equilibrium
Gibbs equation, ds.q= —uT ~'de, with u(x,1) the chemi-
cal potential of the solute, one finds the following general-
ized Gibbs equation:

ds=—uT ‘de—3 \|a,J,-dJ, +ida,J}

n=1
+B,P,:dP,+1dB,P,:P, | . (13)

Contributions in da, and df, are new in the formalism
of extended thermodynamics and have their origin in the
time dependence of coefficients a, and 8, commented on
above.

For the entropy flux one can distinguish three contri-
butions. Keeping only up to second-order terms in the
fluxes, one has the following.

(i) The classical term linked to the entropic content of
the solute particles in solution [18],—uT ~'J, with J (x,?)
the total diffusive mass flux, i.e., the sum of the longitudi-
nal molecular diffusion flux J,,(x,?) and the velocity-
dependent Taylor flux J.

(ii) A term which accounts for the anisotropy that the
velocity field introduces in the dispersion of the solute.
This term is assumed to couple each flux with the others:
— 3% =10 (I, ) /25 @, are vectorial coefficients
which point in the flow direction and must necessarily be
odd in velocities in order to display this kind of anisotro-
py, since then the sign of this contribution becomes sensi-
tive to an inversion of the velocity field (v — —v).

(iii) And, finally, the contribution of fluxes P,. The
simplest case is to consider a term like —3°-18,P,J,,
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with 8§, some coefficients independent of J, and P,,.
Other terms, like ¢J,,, ¢,,,J,,, or P, ¢,—¢’s being
(velocity-dependent) coefficients of proper tensorial
order—although mathematically allowed, are forbidden
by thermodynamics because they do not lead to positive-
definite entropy productions as can be easily proven.
The total entropy flux in a frame which moves with the
one-dimensional fluid particles is thus
S t)=—pT =1 3 a,, (J,J,)— 3 8,P,J, .

nm=1 n=1
(14)

In a general frame, there will also be a convective term
s(x,t)u(t). We underline that the second term in the
right-hand side had not been used so far in extended ther-
modynamics; we will see that it plays an important role
in the case of Taylor dispersion.

After introducing (13), (14), and the mass conservation
equation

dc (x,t)
dt
(V=09/0x is the gradient operator and d /dt denotes ma-

terial time differentiation) into the entropy balance equa-
tion

+V-J(x,t)=0 (15)

£+V-Js=as s (16)
dt

we can write for the entropy production o,
o, =—J, [T" IVIJ']

0

_EJn.

n=1

T 'Vu+a,J,+1a,J,

+8,V-P,+ 3 a,,V-J,

m=1

— 3 P (BuPy+ 1B, P,+5,97,] . (17)

n=1

Use has been made of the fact that coefficients a,,, must
be symmetric with respect to the interchange of indices m
and n, since equality J,,J, =J,J,, holds because all vec-
tors J,, point in the same direction. (In fact, vectorial no-
tation has a minor importance in the present problem,
which is completely one dimensional; it is taken into ac-
count here only to show that all the contributions have
the proper tensorial order.)

IV. CONSTITUTIVE EQUATIONS

As usual in irreversible thermodynamics, constitutive
equations stem from the second law requirement of posi-
tiveness of entropy production. This condition obliges
the term inside brackets in expression (17) (thermo-
dynamic forces) to be linked to the dissipative fluxes
which precede them. The simplest relation is to consider
each force to be proportional to the corresponding conju-
gate flux.

(i) J,,. For the molecular diffusion flux we define the
dissipative coefficient D,,=(K,, T) (du/dc);, with

J. CAMACHO 47

K,, >0, and obtain a Fickian law,
J,=—K, T 'Vu]=—J,=—D,Vec . (18)

(i) P,. We introduce coefficients K,, (>0) in the
equations for P,,

P,=—K;'|B,P,+1B,P,+8,VJ, | .

If coefficients 3, identically vanish, fluxes P, turn out
completely determined by the gradient of J,,,

py=— vJ (19)
" K2n "
(iii) J,,. Similarly, fluxes J, obey relations of the type
J,=—K;' |71 Veta,J,+1a,J,
dc |7

+8,V-P,+ 3 a,,V-J,

m=1

>

with K, >0, and substituting (19) one finds an equation
of the same form as Eq. (9),

©

amn
I+ S v

n m

. &
J + "
2a

n

-1
T, +

n

m=1 a,
n Lo,
== Vet VY, (o)
T

n n
with the identifications
-1
1 o Ou
D =——- , =a,D T s
" K., T 9c |, Tn = Pn g, -
2
12=—-8"
"OK Ky, 1)
— dll — amn (22)
Yn= 2(1" s Vmn— a,

Extended thermodynamics thus provides a connection
between each term in the evolution equation (9) and some
thermodynamic functions: the diffusive term is linked as
usual to entropy production, the relaxational one is relat-
ed to the nonequilibrium part of a generalized entropy,
the contribution in the divergence is connected to an an-
isotropic entropy flux, and the term introducing the spa-
tial correlation in fluxes is related to both an entropy flux
and an entropy production.

It is important to realize that extended thermodynam-
ics imposes some restrictions on the coefficients appear-
ing in the constitutive equations. These restrictions have
to be satisfied for any physical system, and, as we show
below, are verified for the present problem.

First of all, notice that not all the coefficients in (20)
are independent, as (21) and (22) show. For instance, 7,’s
are determined by a,’s, i.e.,, by the quotients 7, /D,. By
using (21) and (10) we have a,~v, 2 so that
a,/a,=—29,/v,, and from (22), y,=09, /v,, in agree-
ment with (11).

From the positiveness of coefficients K, and K,, as a
consequence of the second law, and of a, and du/dc be-
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cause of stability conditions, it is concluded that
coefficients D,, 7,, and /2 must be positive. This is in
perfect agreement with the results obtained in Sec. II,
where D, 7,, and [2=D,, 7, are positive definite.

Furthermore, from (10), (11), and (22), we immediately
get

amn:T_l‘Q& vm+n+vlm*n

dc |r VU, @3

Note that the condition «,,,=«,,, predicted by EIT is
actually satisfied. It is also noticed that these coefficients
are odd in the velocities, as they must be in order to ac-
count for the anisotropy introduced by the velocity field.

Since for arbitrary cross sections the expressions for
the phenomenological coefficients are the same aside
from a normalization factor—excluding the relaxation
times, which play no role here—thermodynamic restric-
tions are corroborated in the general case.

V. CONCLUSIONS

This paper expands on the connection between Taylor
dispersion and irreversible thermodynamics that has been
recently pointed out. We have proven that every term in
the evolution equations for the Taylor flux components is
related to a generalized thermodynamic function of ex-
tended thermodynamics, and that the corresponding en-
tropy production is positive definite in contrast to what
happens in the classical theory of irreversible processes;
also the restrictions on the coefficients of the evolution
equations imposed by extended thermodynamics are
shown to be fulfilled. Therefore we have demonstrated
in all generality—arbitrary flows and arbitrary geom-

etries—that these evolution equations are real constitu-
tive equations, and thus the Taylor flux constitutes an ac-
tual dissipative flux. This is a considerable extension of
the fundamental result by Taylor, which can now be seen
as a limiting case for asymptotic long times, when dissi-
pative fluxes of EIT become diffusive.

From the point of view of extended thermodynamics,
this paper establishes the extension of its formalism to a
different scale (unidimensional) from the usual one in
thermodynamics (tridimensional), and opens the possibili-
ty of using this thermodynamic approach in the wide
variety of physical problems encompassed by longitudinal
dispersion. Due to the long relaxation times characteriz-
ing dissipative fluxes in these systems, the machinery of
the classical theory of irreversible processes is clearly un-
suitable; meanwhile, it is the natural place for extended
irreversible thermodynamics.

The application to Taylor dispersion has motivated the
study of two aspects which had not been considered by
EIT in the past: the consequences of the time dependence
of the coefficients appearing in the nonequilibrium part of
the entropy, and the inclusion of an anisotropic entropy
flux. Their consideration leads to some counterparts in
the constitutive equations for the fluxes and to new rela-
tions among phenomenological coefficients; both are
satisfied in the present case.
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